2019年海南省高考数学(原卷版)(理科)

2024-01-06·5页·223.3 K

2019年普通高等学校招生全国统一考试理科数学本试卷共5页。考试结束后,将本试卷和答题卡一并交回。注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2-5x+6>0},B={ x|x-1<0},则AB=A.(-,1)B.(-2,1)C.(-3,-1)D.(3,+)2.设z=-3+2i,则在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.已知=(2,3),=(3,t),=1,则=A.-3B.-2C.2D.34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行.点是平衡点,位于地月连线的延长线上.设地球质量为M,月球质量为M,地月距离为R,点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:.设,由于的值很小,因此在近似计算中,则r的近似值为A.B.C.D.5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数B.平均数C.方差 D.极差6.若a>b,则A.ln(ab)>0 B.3a<3b C.a3b3>0 D.a>b7.设,为两个平面,则的充要条件是A.内有无数条直线与平行 B.内有两条相交直线与平行 C.,平行于同一条直线 D.,垂直于同一平面8.若抛物线y2=2px(p>0)的焦点是椭圆的一个焦点,则p=A.2 B.3 C.4 D.89.下列函数中,以为周期且在区间(,)单调递增的是A.f(x)=cos 2x B.f(x)=sin 2x C.f(x)=cosx D.f(x)= sinx10.已知(0,),2sin 2=cos 2+1,则sin =A. B. C. D.11.设F为双曲线C:的右焦点,为坐标原点,以为直径的圆与圆交于P,Q两点.若,则C的离心率为A. B. C.2D.12.设函数的定义域为R,满足,且当时,.若对任意,都有,则m的取值范围是A.B. C. D.二、填空题:本题共4小题,每小题5分,共20分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.14.已知是奇函数,且当时,.若,则__________.15.的内角的对边分别为.若,则的面积为__________.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.(一)必考题:共60分。 17.(12分)如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1.(1)证明:BE平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.18.(12分)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.19.(12分)已知数列{an}和{bn}满足a1=1,b1=0, ,.(1)证明:{an+bn}是等比数列,{an–bn}是等差数列;(2)求{an}和{bn}的通项公式.20.(12分)已知函数.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线y=ln x 在点A(x0,ln x0)处的切线也是曲线的切线.21.(12分)已知点A(2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PEx轴,垂足为E,连结QE并延长交C于点G.(i)证明:是直角三角形;(ii)求面积的最大值.(二)选考题:共10分.请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P.(1)当时,求及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程. 23.[选修4-5:不等式选讲](10分)已知 (1)当时,求不等式的解集;(2)若时,,求的取值范围.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐