2014年全国统一高考数学试卷(文科)(大纲版)(含解析版)

2024-01-06·22页·259 K

2014全国统一高考数学试卷文科)(大纲版)一、选择题(本大题共12小题,每小题5分)1.(5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则MN中元素的个数为()A.2B.3C.5D.72.(5分)已知角的终边经过点(4,3),则cos=()A.B.C.D.3.(5分)不等式组的解集为()A.{x|2x1}B.{x|1x0}C.{x|0x1}D.{x|x1}4.(5分)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.5.(5分)函数y=ln(+1)(x1)的反函数是()A.y=(1ex)3(x1)B.y=(ex1)3(x1)C.y=(1ex)3(xR)D.y=(ex1)3(xR)6.(5分)已知,为单位向量,其夹角为60,则(2)=()A.1B.0C.1D.27.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种8.(5分)设等比数列{an}的前n项和为Sn.若S2=3,S4=15,则S6=()A.31B.32C.63D.649.(5分)已知椭圆C:+=1(ab0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=110.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16C.9D.11.(5分)双曲线C:=1(a0,b0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.412.(5分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.2B.1C.0D.1二、填空题(本大题共4小题,每小题5分)13.(5分)(x2)6的展开式中x3的系数是 .(用数字作答)14.(5分)函数y=cos2x+2sinx的最大值是 .15.(5分)设x,y满足约束条件,则z=x+4y的最大值为 .16.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于 .三、解答题17.(10分)数列{an}满足a1=1,a2=2,an+2=2an+1an+2.()设bn=an+1an,证明{bn}是等差数列;()求{an}的通项公式.18.(12分)ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.19.(12分)如图,三棱柱ABCA1B1C1中,点A1在平面ABC内的射影D在AC上,ACB=90,BC=1,AC=CC1=2.()证明:AC1A1B;()设直线AA1与平面BCC1B1的距离为,求二面角A1ABC的大小.20.(12分)设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.()求同一工作日至少3人需使用设备的概率;()实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.21.(12分)函数f(x)=ax3+3x2+3x(a0).()讨论f(x)的单调性;()若f(x)在区间(1,2)是增函数,求a的取值范围.22.(12分)已知抛物线C:y2=2px(p0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.()求C的方程;()过F的直线l与C相交于A、B两点,若AB的垂直平分线l与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.2014年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则MN中元素的个数为()A.2B.3C.5D.7【考点】1A:集合中元素个数的最值;1E:交集及其运算.菁优网版权所有【专题】5J:集合.【分析】根据M与N,找出两集合的交集,找出交集中的元素即可.【解答】解:M={1,2,4,6,8},N={1,2,3,5,6,7},MN={1,2,6},即MN中元素的个数为3.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)已知角的终边经过点(4,3),则cos=()A.B.C.D.【考点】G9:任意角的三角函数的定义.菁优网版权所有【专题】56:三角函数的求值.【分析】由条件直接利用任意角的三角函数的定义求得cos的值.【解答】解:角的终边经过点(4,3),x=4,y=3,r==5.cos===,故选:D.【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.3.(5分)不等式组的解集为()A.{x|2x1}B.{x|1x0}C.{x|0x1}D.{x|x1}【考点】7E:其他不等式的解法.菁优网版权所有【专题】59:不等式的解法及应用.【分析】解一元二次不等式、绝对值不等式,分别求出不等式组中每个不等式的解集,再取交集,即得所求.【解答】解:由不等式组可得 ,解得0x1,故选:C.【点评】本题主要考查一元二次不等式、绝对值不等式的解法,属于基础题.4.(5分)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.菁优网版权所有【专题】5G:空间角.【分析】由E为AB的中点,可取AD中点F,连接EF,则CEF为异面直线CE与BD所成角,设出正四面体的棱长,求出CEF的三边长,然后利用余弦定理求解异面直线CE与BD所成角的余弦值.【解答】解:如图,取AD中点F,连接EF,CF,E为AB的中点,EFDB,则CEF为异面直线BD与CE所成的角,ABCD为正四面体,E,F分别为AB,AD的中点,CE=CF.设正四面体的棱长为2a,则EF=a,CE=CF=.在CEF中,由余弦定理得:=.故选:B.【点评】本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用,是中档题.5.(5分)函数y=ln(+1)(x1)的反函数是()A.y=(1ex)3(x1)B.y=(ex1)3(x1)C.y=(1ex)3(xR)D.y=(ex1)3(xR)【考点】4R:反函数.菁优网版权所有【专题】51:函数的性质及应用.【分析】由已知式子解出x,然后互换x、y的位置即可得到反函数.【解答】解:y=ln(+1),+1=ey,即=ey1,x=(ey1)3,所求反函数为y=(ex1)3,故选:D.【点评】本题考查反函数解析式的求解,属基础题.6.(5分)已知,为单位向量,其夹角为60,则(2)=()A.1B.0C.1D.2【考点】9O:平面向量数量积的性质及其运算.菁优网版权所有【专题】5A:平面向量及应用.【分析】由条件利用两个向量的数量积的定义,求得、的值,可得(2)的值.【解答】解:由题意可得,=11cos60=,=1,(2)=2=0,故选:B.【点评】本题主要考查两个向量的数量积的定义,属于基础题.7.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【考点】D9:排列、组合及简单计数问题.菁优网版权所有【专题】5O:排列组合.【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有155=75种;故选:C.【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.8.(5分)设等比数列{an}的前n项和为Sn.若S2=3,S4=15,则S6=()A.31B.32C.63D.64【考点】89:等比数列的前n项和.菁优网版权所有【专题】54:等差数列与等比数列.【分析】由等比数列的性质可得S2,S4S2,S6S4成等比数列,代入数据计算可得.【解答】解:S2=a1+a2,S4S2=a3+a4=(a1+a2)q2,S6S4=a5+a6=(a1+a2)q4,所以S2,S4S2,S6S4成等比数列,即3,12,S615成等比数列,可得122=3(S615),解得S6=63故选:C.【点评】本题考查等比数列的性质,得出S2,S4S2,S6S4成等比数列是解决问题的关键,属基础题.9.(5分)已知椭圆C:+=1(ab0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=1【考点】K4:椭圆的性质.菁优网版权所有【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:AF1B的周长为4,AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,4a=4,a=,离心率为,,c=1,b==,椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.10.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16C.9D.【考点】LG:球的体积和表面积;LR:球内接多面体.菁优网版权所有【专题】11:计算题;5F:空间位置关系与距离.【分析】正四棱锥PABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则棱锥的高为4,底面边长为2,R2=(4R)2+()2,R=,球的表面积为4()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.11.(5分)双曲线C:=1(a0,b0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.4【考点】KC:双曲线的性质.菁优网版权所有【专题】5D:圆锥曲线的定义、性质与方程.【分析】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到结论.【解答】解::=1(a0,b0)的离心率为2,e=,双曲线的渐近线方程为y=,不妨取y=,即bxay=0,则c=2a,b=,焦点F(c,0)到渐近线bxay=0的距离为,d=,即,解得c=2,则焦距为2c=4,故选:C.【点评】本题主要考查是双曲线的基本运算,利用双曲线的离心率以及焦点到直线的距离公式,建立方程组是解决本题的关键,比较基础.12.(5分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.2B.1C.0D.1【考点】3K:函数奇偶性的性质与判断.菁优网版权所有【专题】51:函数的性质及应用.【分析】根据函数的奇偶性的性质,得到f(x+8)=f(x),即可得到结论.【解答】解:f(x+2)为偶函数,f(x)是奇函数,设g(x)=f(x+2),则g(x)=g(x),即f(x+2)=f(x+2),f(x)是奇函数,f(x+2)=f(x+2)=f(x2),即f(x+4)=f(x),f(x+8)=f(x+4+4)=f(x+4)=f(x),则f(8)=f(0)=0,f(9)=f(1)=1,f(8)+f(9)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.二、填空题(本大题共4小题,每小题5分)13.(5分)(x2)6的展开式中x3的系数是160.(用数字作答)【考点】DA:二项式定理.菁优网版权所有【专题】11:计算题.【分析】根据题意,由二项式定理可得(x2)6的展开式的通项,令x的系数为3,可得r=3,将r=3代入通项,计算可得T4=160x3,即可得答案.【解答】解:根据题意,(x2)6的展开式的通项为Tr+1=C6rx6r(2)r=(1)r2rC6rx6r,令6r=3可得r=3,此时T4=(1)323C63x3=160x3,即x3的系数是160;故答案为160.【点评】本题考查二项式定理的应用,关键要得到(x2)6的展开式的通项.14.(5分)函数y=cos2x+2sinx的最大值是.【考点】HW:三角函数的最值.菁优网版权所有【专题】11:计算题.【分析】利用二倍角公式对函数化简可得y=cos2x+2sinx=12sin2x+2sinx=,结合1sinx1及二次函数的性质可求函数有最大值【解答】解:y=cos2x+2sinx=12sin2x+2sinx=又1sinx1当sinx=时,函数有最大值故答案为:【点评】本题主要考查了利用二倍角度公式对三角函数进行化简,二次函数在闭区间上的最值的求解,解题中要注意1sinx1的条件.15.(5分)设x,y满足约束条件,则z=x+4y的最大值为5.【考点】7C:简单线性规划.菁优网版权所有【专题】31:数形结合.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得C(1,1).化目标函数z=x+4y为直线方程的斜截式,得.由图可知,当直线过C点时,直线在y轴上的截距最大,z最大.此时zmax=1+41=5.故答案为:5.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.16.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.【考点】IV:两直线的夹角与到角问题.菁优网版权所有【专题】5B:直线与圆.【分析】设l1与l2的夹角为2,由于l1与l2的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sin= 的值,可得cos、tan 的值,再根据tan2=,计算求得结果.【解答】解:设l1与l2的夹角为2,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA==,圆的半径为r=,sin==,cos=,tan==,tan2===,故答案为:.【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.三、解答题17.(10分)数列{an}满足a1=1,a2=2,an+2=2an+1an+2.()设bn=an+1an,证明{bn}是等差数列;()求{an}的通项公式.【考点】83:等差数列的性质;84:等差数列的通项公式;8H:数列递推式.菁优网版权所有【专题】54:等差数列与等比数列.【分析】()将an+2=2an+1an+2变形为:an+2an+1=an+1an+2,再由条件得bn+1=bn+2,根据条件求出b1,由等差数列的定义证明{bn}是等差数列;()由()和等差数列的通项公式求出bn,代入bn=an+1an并令n从1开始取值,依次得(n1)个式子,然后相加,利用等差数列的前n项和公式求出{an}的通项公式an.【解答】解:()由an+2=2an+1an+2得,an+2an+1=an+1an+2,由bn=an+1an得,bn+1=bn+2,即bn+1bn=2,又b1=a2a1=1,所以{bn}是首项为1,公差为2的等差数列.()由()得,bn=1+2(n1)=2n1,由bn=an+1an得,an+1an=2n1,则a2a1=1,a3a2=3,a4a3=5,…,anan1=2(n1)1,所以,ana1=1+3+5+…+2(n1)1==(n1)2,又a1=1,所以{an}的通项公式an=(n1)2+1=n22n+2.【点评】本题考查了等差数列的定义、通项公式、前n项和公式,及累加法求数列的通项公式和转化思想,属于中档题.18.(12分)ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.菁优网版权所有【专题】58:解三角形.【分析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[(A+C)]=tan(A+C)即可得出.【解答】解:3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,3tanA=2tanC,tanA=,2tanC=3=1,解得tanC=.tanB=tan[(A+C)]=tan(A+C)===1,B(0,),B=【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.19.(12分)如图,三棱柱ABCA1B1C1中,点A1在平面ABC内的射影D在AC上,ACB=90,BC=1,AC=CC1=2.()证明:AC1A1B;()设直线AA1与平面BCC1B1的距离为,求二面角A1ABC的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.菁优网版权所有【专题】5F:空间位置关系与距离.【分析】()由已知数据结合线面垂直的判定和性质可得;()作辅助线可证A1FD为二面角A1ABC的平面角,解三角形由反三角函数可得.【解答】解:()A1D平面ABC,A1D平面AA1C1C,平面AA1C1C平面ABC,又BCACBC平面AA1C1C,连结A1C,由侧面AA1C1C为菱形可得AC1A1C,又AC1BC,A1CBC=C,AC1平面A1BC,AB1平面A1BC,AC1A1B;()BC平面AA1C1C,BC平面BCC1B1,平面AA1C1C平面BCC1B1,作A1ECC1,E为垂足,可得A1E平面BCC1B1,又直线AA1平面BCC1B1,A1E为直线AA1与平面BCC1B1的距离,即A1E=,A1C为ACC1的平分线,A1D=A1E=,作DFAB,F为垂足,连结A1F,又可得ABA1D,A1FA1D=A1,AB平面A1DF,A1F平面A1DFA1FAB,A1FD为二面角A1ABC的平面角,由AD==1可知D为AC中点,DF==,tanA1FD==,二面角A1ABC的大小为arctan【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题.20.(12分)设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.()求同一工作日至少3人需使用设备的概率;()实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.菁优网版权所有【专题】5I:概率与统计.【分析】()把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求.()由()可得若k=2,不满足条件.若k=3,求得“同一工作日需使用设备的人数大于3”的概率为0.060.1,满足条件,从而得出结论.【解答】解:()由题意可得“同一工作日至少3人需使用设备”的概率为0.60.50.50.4+(10.6)0.50.50.4+0.6(10.5)0.50.4+0.60.5(10.5)0.4+0.60.50.5(10.4)=0.31.()由()可得若k=2,则“同一工作日需使用设备的人数大于2”的概率为0.310.1,不满足条件.若k=3,则“同一工作日需使用设备的人数大于3”的概率为 0.60.50.50.4=0.060.1,满足条件.故k的最小值为3.【点评】本题主要考查相互独立事件的概率乘法公式,体现了分类讨论的数学思想,属于中档题.21.(12分)函数f(x)=ax3+3x2+3x(a0).()讨论f(x)的单调性;()若f(x)在区间(1,2)是增函数,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.菁优网版权所有【专题】53:导数的综合应用.【分析】()求出函数的导数,通过导数为0,利用二次函数的根,通过a的范围讨论f(x)的单调性;()当a0,x0时,f(x)在区间(1,2)是增函数,当a0时,f(x)在区间(1,2)是增函数,推出f(1)0且f(2)0,即可求a的取值范围.【解答】解:()函数f(x)=ax3+3x2+3x,f(x)=3ax2+6x+3,令f(x)=0,即3ax2+6x+3=0,则=36(1a),若a1时,则0,f(x)0,f(x)在R上是增函数;因为a0,a1且a0时,0,f(x)=0方程有两个根,x1=,x2=,当0a1时,则当x(,x2)或(x1,+)时,f(x)0,故函数在(,x2)或(x1,+)是增函数;在(x2,x1)是减函数;当a0时,则当x(,x1)或(x2,+),f(x)0,故函数在(,x1)或(x2,+)是减函数;在(x1,x2)是增函数;()当a0,x0时,f(x)=3ax2+6x+30 故a0时,f(x)在区间(1,2)是增函数,当a0时,f(x)在区间(1,2)是增函数,当且仅当:f(1)0且f(2)0,解得,a的取值范围[)(0,+).【点评】本题考查函数的导数的应用,判断函数的单调性以及已知单调性求解函数中的变量的范围,考查分类讨论思想的应用.22.(12分)已知抛物线C:y2=2px(p0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.()求C的方程;()过F的直线l与C相交于A、B两点,若AB的垂直平分线l与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【考点】KH:直线与圆锥曲线的综合.菁优网版权所有【专题】5E:圆锥曲线中的最值与范围问题.【分析】()设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得 p的值,可得C的方程.()设l的方程为 x=my+1 (m0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:()设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px(p0),可得x0=,点P(0,4),|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,+=,求得 p=2,或 p=2(舍去).故C的方程为 y2=4x.()由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为 x=my+1(m0),代入抛物线方程可得y24my4=0,显然判别式=16m2+160,y1+y2=4m,y1y2=4.AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1y2|==4(m2+1).又直线l的斜率为m,直线l的方程为 x=y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l与C相交于M、N两点,把线l的方程代入抛物线方程可得 y2+y4(2m2+3)=0,y3+y4=,y3y4=4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),|MN|=|y3y4|=,MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,+DE2=MN2,4(m2+1)2 ++=,化简可得 m21=0,m=1,直线l的方程为 xy1=0,或 x+y1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐