2016年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

2024-01-06·29页·339.5 K

2016全国统一高考数学试卷文科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出四个选项,只有一个选项符合题目要求.1.(5分)已知集合A={1,2,3},B={x|x29},则AB=()A.{2,1,0,1,2,3}B.{2,1,0,1,2}C.{1,2,3}D.{1,2}2.(5分)设复数z满足z+i=3i,则=()A.1+2iB.12iC.3+2iD.32i3.(5分)函数y=Asin(x+)的部分图象如图所示,则()A.y=2sin(2x)B.y=2sin(2x)C.y=2sin(x+)D.y=2sin(x+)4.(5分)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为()A.12B.C.8D.45.(5分)设F为抛物线C:y2=4x的焦点,曲线y=(k0)与C交于点P,PFx轴,则k=()A.B.1C.D.26.(5分)圆x2+y22x8y+13=0的圆心到直线ax+y1=0的距离为1,则a=()A.B.C.D.27.(5分)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20B.24C.28D.328.(5分)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.B.C.D.9.(5分)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A.7B.12C.17D.3410.(5分)下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是()A.y=xB.y=lgxC.y=2xD.y=11.(5分)函数f(x)=cos2x+6cos(x)的最大值为()A.4B.5C.6D.712.(5分)已知函数f(x)(xR)满足f(x)=f(2x),若函数y=|x22x3|与 y=f(x) 图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则xi=()A.0B.mC.2mD.4m二、填空题:本题共4小题,每小题5分.13.(5分)已知向量=(m,4),=(3,2),且,则m= .14.(5分)若x,y满足约束条件,则z=x2y的最小值为 .15.(5分)ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b= .16.(5分)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)等差数列{an}中,a3+a4=4,a5+a7=6.()求{an}的通项公式;()设bn=[an],求数列{bn}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.18.(12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数012345保费0.85aa1.25a1.5a1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数012345频数605030302010(I)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;()记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;()求续保人本年度的平均保费估计值.19.(12分)如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将DEF沿EF折到DEF的位置.()证明:ACHD;()若AB=5,AC=6,AE=,OD=2,求五棱锥DABCFE体积.20.(12分)已知函数f(x)=(x+1)lnxa(x1).(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x(1,+)时,f(x)0,求a的取值范围.21.(12分)已知A是椭圆E:+=1的左顶点,斜率为k(k0)的直线交E于A,M两点,点N在E上,MANA.(I)当|AM|=|AN|时,求AMN的面积(II)当2|AM|=|AN|时,证明:k2.请考生在第2224题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DFCE,垂足为F.()证明:B,C,G,F四点共圆;()若AB=1,E为DA的中点,求四边形BCGF的面积.[选项4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.()以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;()直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l的斜率.[选修4-5:不等式选讲]24.已知函数f(x)=|x|+|x+|,M为不等式f(x)2的解集.()求M;()证明:当a,bM时,|a+b||1+ab|.2016年全国统一高考数学试卷(文科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出四个选项,只有一个选项符合题目要求.1.(5分)已知集合A={1,2,3},B={x|x29},则AB=()A.{2,1,0,1,2,3}B.{2,1,0,1,2}C.{1,2,3}D.{1,2}【考点】1E:交集及其运算.菁优网版权所有【专题】11:计算题;35:转化思想;4O:定义法;5J:集合.【分析】先求出集合A和B,由此利用交集的定义能求出AB的值.【解答】解:集合A={1,2,3},B={x|x29}={x|3x3},AB={1,2}.故选:D.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.(5分)设复数z满足z+i=3i,则=()A.1+2iB.12iC.3+2iD.32i【考点】A5:复数的运算.菁优网版权所有【专题】11:计算题;4O:定义法;5N:数系的扩充和复数.【分析】根据已知求出复数z,结合共轭复数的定义,可得答案.【解答】解:复数z满足z+i=3i,z=32i,=3+2i,故选:C.【点评】本题考查的知识点是复数代数形式的加减运算,共轭复数的定义,难度不大,属于基础题.3.(5分)函数y=Asin(x+)的部分图象如图所示,则()A.y=2sin(2x)B.y=2sin(2x)C.y=2sin(x+)D.y=2sin(x+)【考点】HK:由y=Asin(x+)的部分图象确定其解析式.菁优网版权所有【专题】35:转化思想;4R:转化法;57:三角函数的图像与性质.【分析】根据已知中的函数y=Asin(x+)的部分图象,求出满足条件的A,,值,可得答案.【解答】解:由图可得:函数的最大值为2,最小值为2,故A=2,=,故T=,=2,故y=2sin(2x+),将(,2)代入可得:2sin(+)=2,则=满足要求,故y=2sin(2x),故选:A.【点评】本题考查的知识点是由y=Asin(x+)的部分图象确定其解析式,确定各个参数的值是解答的关键.4.(5分)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为()A.12B.C.8D.4【考点】LG:球的体积和表面积.菁优网版权所有【专题】11:计算题;34:方程思想;49:综合法;5U:球.【分析】先通过正方体的体积,求出正方体的棱长,然后求出球的半径,即可求出球的表面积.【解答】解:正方体体积为8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12.故选:A.【点评】本题考查学生的空间想象能力,体积与面积的计算能力,是基础题.5.(5分)设F为抛物线C:y2=4x的焦点,曲线y=(k0)与C交于点P,PFx轴,则k=()A.B.1C.D.2【考点】K8:抛物线的性质.菁优网版权所有【专题】35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】根据已知,结合抛物线的性质,求出P点坐标,再由反比例函数的性质,可得k值.【解答】解:抛物线C:y2=4x的焦点F为(1,0),曲线y=(k0)与C交于点P在第一象限,由PFx轴得:P点横坐标为1,代入C得:P点纵坐标为2,故k=2,故选:D.【点评】本题考查的知识点是抛物线的简单性质,反比例函数的性质,难度中档.6.(5分)圆x2+y22x8y+13=0的圆心到直线ax+y1=0的距离为1,则a=()A.B.C.D.2【考点】IT:点到直线的距离公式;J9:直线与圆的位置关系.菁优网版权所有【专题】35:转化思想;4R:转化法;5B:直线与圆.【分析】求出圆心坐标,代入点到直线距离方程,解得答案.【解答】解:圆x2+y22x8y+13=0的圆心坐标为:(1,4),故圆心到直线ax+y1=0的距离d==1,解得:a=,故选:A.【点评】本题考查的知识点是圆的一般方程,点到直线的距离公式,难度中档.7.(5分)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20B.24C.28D.32【考点】L!:由三视图求面积、体积.菁优网版权所有【专题】15:综合题;35:转化思想;49:综合法;5F:空间位置关系与距离.【分析】空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,在轴截面中圆锥的母线长使用勾股定理做出的,写出表面积,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,做出圆柱的表面积,注意不包括重合的平面.【解答】解:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,在轴截面中圆锥的母线长是=4,圆锥的侧面积是24=8,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,圆柱表现出来的表面积是22+224=20空间组合体的表面积是28,故选:C.【点评】本题考查由三视图求表面积,本题的图形结构比较简单,易错点可能是两个几何体重叠的部分忘记去掉,求表面积就有这样的弊端.8.(5分)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.B.C.D.【考点】CF:几何概型.菁优网版权所有【专题】11:计算题;34:方程思想;49:综合法;5I:概率与统计.【分析】求出一名行人前25秒来到该路口遇到红灯,即可求出至少需要等待15秒才出现绿灯的概率.【解答】解:红灯持续时间为40秒,至少需要等待15秒才出现绿灯,一名行人前25秒来到该路口遇到红灯,至少需要等待15秒才出现绿灯的概率为=.故选:B.【点评】本题考查概率的计算,考查几何概型,考查学生的计算能力,比较基础.9.(5分)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A.7B.12C.17D.34【考点】EF:程序框图.菁优网版权所有【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.【解答】解:输入的x=2,n=2,当输入的a为2时,S=2,k=1,不满足退出循环的条件;当再次输入的a为2时,S=6,k=2,不满足退出循环的条件;当输入的a为5时,S=17,k=3,满足退出循环的条件;故输出的S值为17,故选:C.【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.10.(5分)下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是()A.y=xB.y=lgxC.y=2xD.y=【考点】4K:对数函数的定义域;4L:对数函数的值域与最值.菁优网版权所有【专题】11:计算题;4O:定义法;51:函数的性质及应用.【分析】分别求出各个函数的定义域和值域,比较后可得答案.【解答】解:函数y=10lgx的定义域和值域均为(0,+),函数y=x的定义域和值域均为R,不满足要求;函数y=lgx的定义域为(0,+),值域为R,不满足要求;函数y=2x的定义域为R,值域为(0,+),不满足要求;函数y=的定义域和值域均为(0,+),满足要求;故选:D.【点评】本题考查的知识点是函数的定义域和值域,熟练掌握各种基本初等函数的定义域和值域,是解答的关键.11.(5分)函数f(x)=cos2x+6cos(x)的最大值为()A.4B.5C.6D.7【考点】HW:三角函数的最值.菁优网版权所有【专题】33:函数思想;4J:换元法;56:三角函数的求值;57:三角函数的图像与性质.【分析】运用二倍角的余弦公式和诱导公式,可得y=12sin2x+6sinx,令t=sinx(1t1),可得函数y=2t2+6t+1,配方,结合二次函数的最值的求法,以及正弦函数的值域即可得到所求最大值.【解答】解:函数f(x)=cos2x+6cos(x)=12sin2x+6sinx,令t=sinx(1t1),可得函数y=2t2+6t+1=2(t)2+,由[1,1],可得函数在[1,1]递增,即有t=1即x=2k+,kZ时,函数取得最大值5.故选:B.【点评】本题考查三角函数的最值的求法,注意运用二倍角公式和诱导公式,同时考查可化为二次函数的最值的求法,属于中档题.12.(5分)已知函数f(x)(xR)满足f(x)=f(2x),若函数y=|x22x3|与 y=f(x) 图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则xi=()A.0B.mC.2mD.4m【考点】&2:带绝对值的函数;&T:函数迭代;3V:二次函数的性质与图象.菁优网版权所有【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】根据已知中函数函数f(x)(xR)满足f(x)=f(2x),分析函数的对称性,可得函数y=|x22x3|与 y=f(x) 图象的交点关于直线x=1对称,进而得到答案.【解答】解:函数f(x)(xR)满足f(x)=f(2x),故函数f(x)的图象关于直线x=1对称,函数y=|x22x3|的图象也关于直线x=1对称,故函数y=|x22x3|与 y=f(x) 图象的交点也关于直线x=1对称,故xi=2=m,故选:B.【点评】本题考查的知识点是二次函数的图象和性质,函数的对称性质,难度中档.二、填空题:本题共4小题,每小题5分.13.(5分)已知向量=(m,4),=(3,2),且,则m=6.【考点】9K:平面向量共线(平行)的坐标表示.菁优网版权所有【专题】11:计算题;29:规律型;5A:平面向量及应用.【分析】直接利用向量共线的充要条件列出方程求解即可.【解答】解:向量=(m,4),=(3,2),且,可得12=2m,解得m=6.故答案为:6.【点评】本题考查向量共线的充要条件的应用,考查计算能力.14.(5分)若x,y满足约束条件,则z=x2y的最小值为5.【考点】7C:简单线性规划.菁优网版权所有【专题】11:计算题;29:规律型;31:数形结合;59:不等式的解法及应用;5T:不等式.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得B(3,4).化目标函数z=x2y为y=xz,由图可知,当直线y=xz过B(3,4)时,直线在y轴上的截距最大,z有最小值为:324=5.故答案为:5.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b=.【考点】HU:解三角形.菁优网版权所有【专题】34:方程思想;48:分析法;56:三角函数的求值;58:解三角形.【分析】运用同角的平方关系可得sinA,sinC,再由诱导公式和两角和的正弦公式,可得sinB,运用正弦定理可得b=,代入计算即可得到所求值.【解答】解:由cosA=,cosC=,可得sinA===,sinC===,sinB=sin(A+C)=sinAcosC+cosAsinC=+=,由正弦定理可得b===.故答案为:.【点评】本题考查正弦定理的运用,同时考查两角和的正弦公式和诱导公式,以及同角的平方关系的运用,考查运算能力,属于中档题.16.(5分)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是1和3.【考点】F4:进行简单的合情推理.菁优网版权所有【专题】2A:探究型;49:综合法;5L:简易逻辑.【分析】可先根据丙的说法推出丙的卡片上写着1和2,或1和3,分别讨论这两种情况,根据甲和乙的说法可分别推出甲和乙卡片上的数字,这样便可判断出甲卡片上的数字是多少.【解答】解:根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;根据甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又甲说,“我与乙的卡片上相同的数字不是2”;甲的卡片上写的数字不是1和2,这与已知矛盾;甲的卡片上的数字是1和3.故答案为:1和3.【点评】考查进行简单的合情推理的能力,以及分类讨论得到解题思想,做这类题注意找出解题的突破口.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)等差数列{an}中,a3+a4=4,a5+a7=6.()求{an}的通项公式;()设bn=[an],求数列{bn}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.【考点】83:等差数列的性质;84:等差数列的通项公式.菁优网版权所有【专题】11:计算题;35:转化思想;4R:转化法;54:等差数列与等比数列.【分析】()设等差数列{an}的公差为d,根据已知构造关于首项和公差方程组,解得答案;()根据bn=[an],列出数列{bn}的前10项,相加可得答案.【解答】解:()设等差数列{an}的公差为d,a3+a4=4,a5+a7=6.,解得:,an=;()bn=[an],b1=b2=b3=1,b4=b5=2,b6=b7=b8=3,b9=b10=4.故数列{bn}的前10项和S10=31+22+33+24=24.【点评】本题考查的知识点是等差数列的通项公式,等差数列的性质,难度中档.18.(12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数012345保费0.85aa1.25a1.5a1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数012345频数605030302010(I)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;()记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;()求续保人本年度的平均保费估计值.【考点】B2:简单随机抽样.菁优网版权所有【专题】11:计算题;29:规律型;5I:概率与统计.【分析】(I)求出A为事件:“一续保人本年度的保费不高于基本保费”的人数.总事件人数,即可求P(A)的估计值;()求出B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”的人数.然后求P(B)的估计值;()利用人数与保费乘积的和除以总续保人数,可得本年度的平均保费估计值.【解答】解:(I)记A为事件:“一续保人本年度的保费不高于基本保费”.事件A的人数为:60+50=110,该险种的200名续保,P(A)的估计值为:=;()记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.事件B的人数为:30+30=60,P(B)的估计值为:=;()续保人本年度的平均保费估计值为==1.1925a.【点评】本题考查样本估计总体的实际应用,考查计算能力.19.(12分)如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将DEF沿EF折到DEF的位置.()证明:ACHD;()若AB=5,AC=6,AE=,OD=2,求五棱锥DABCFE体积.【考点】LF:棱柱、棱锥、棱台的体积;LO:空间中直线与直线之间的位置关系.菁优网版权所有【专题】31:数形结合;35:转化思想;5F:空间位置关系与距离;5Q:立体几何.【分析】(1)根据直线平行的性质以菱形对角线垂直的性质进行证明即可.(2)根据条件求出底面五边形的面积,结合平行线段的性质证明OD是五棱锥DABCFE的高,即可得到结论.【解答】()证明:菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EFAC,且EFBD将DEF沿EF折到DEF的位置,则DHEF,EFAC,ACHD;()若AB=5,AC=6,则AO=3,B0=OD=4,AE=,AD=AB=5,DE=5=,EFAC,====,EH=,EF=2EH=,DH=3,OH=43=1,HD=DH=3,OD=2,满足HD2=OD2+OH2,则OHD为直角三角形,且ODOH,又ODAC,ACOH=O,即OD底面ABCD,即OD是五棱锥DABCFE的高.底面五边形的面积S=+=+=12+=,则五棱锥DABCFE体积V=SOD=2=.【点评】本题主要考查空间直线和平面的位置关系的判断,以及空间几何体的体积,根据线面垂直的判定定理以及五棱锥的体积公式是解决本题的关键.本题的难点在于证明OD是五棱锥DABCFE的高.考查学生的运算和推理能力.20.(12分)已知函数f(x)=(x+1)lnxa(x1).(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x(1,+)时,f(x)0,求a的取值范围.【考点】66:简单复合函数的导数.菁优网版权所有【专题】15:综合题;35:转化思想;49:综合法;52:导数的概念及应用.【分析】(I)当a=4时,求出曲线y=f(x)在(1,f(1))处的切线的斜率,即可求出切线方程;(II)先求出f(x)f(1)=2a,再结合条件,分类讨论,即可求a的取值范围.【解答】解:(I)当a=4时,f(x)=(x+1)lnx4(x1).f(1)=0,即点为(1,0),函数的导数f(x)=lnx+(x+1)4,则f(1)=ln1+24=24=2,即函数的切线斜率k=f(1)=2,则曲线y=f(x)在(1,0)处的切线方程为y=2(x1)=2x+2;(II)f(x)=(x+1)lnxa(x1),f(x)=1++lnxa,f(x)=,x1,f(x)0,f(x)在(1,+)上单调递增,f(x)f(1)=2a.a2,f(x)f(1)0,f(x)在(1,+)上单调递增,f(x)f(1)=0,满足题意;a2,存在x0(1,+),f(x0)=0,函数f(x)在(1,x0)上单调递减,在(x0,+)上单调递增,由f(1)=0,可得存在x0(1,+),f(x0)0,不合题意.综上所述,a2.另解:若当x(1,+)时,f(x)0,可得(x+1)lnxa(x1)0,即为a,由y=的导数为y=,由y=x2lnx的导数为y=1+=0,函数y在x1递增,可得0,则函数y=在x1递增,则==2,可得2恒成立,即有a2.【点评】本题主要考查了导数的应用,函数的导数与函数的单调性的关系的应用,导数的几何意义,考查参数范围的求解,考查学生分析解决问题的能力,有难度.21.(12分)已知A是椭圆E:+=1的左顶点,斜率为k(k0)的直线交E于A,M两点,点N在E上,MANA.(I)当|AM|=|AN|时,求AMN的面积(II)当2|AM|=|AN|时,证明:k2.【考点】KH:直线与圆锥曲线的综合.菁优网版权所有【专题】33:函数思想;49:综合法;4M:构造法;5D:圆锥曲线的定义、性质与方程.【分析】(I)依题意知椭圆E的左顶点A(2,0),由|AM|=|AN|,且MANA,可知AMN为等腰直角三角形,设M(a2,a),利用点M在E上,可得3(a2)2+4a2=12,解得:a=,从而可求AMN的面积;(II)设直线lAM的方程为:y=k(x+2),直线lAN的方程为:y=(x+2),联立消去y,得(3+4k2)x2+16k2x+16k212=0,利用韦达定理及弦长公式可分别求得|AM|=|xM(2)|=,|AN|==,结合2|AM|=|AN|,可得=,整理后,构造函数f(k)=4k36k2+3k8,利用导数法可判断其单调性,再结合零点存在定理即可证得结论成立.【解答】解:(I)由椭圆E的方程:+=1知,其左顶点A(2,0),|AM|=|AN|,且MANA,AMN为等腰直角三角形,MNx轴,设M的纵坐标为a,则M(a2,a),点M在E上,3(a2)2+4a2=12,整理得:7a212a=0,a=或a=0(舍),SAMN=a2a=a2=;(II)设直线lAM的方程为:y=k(x+2),直线lAN的方程为:y=(x+2),由消去y得:(3+4k2)x2+16k2x+16k212=0,xM2=,xM=2=,|AM|=|xM(2)|==k0,|AN|==,又2|AM|=|AN|,=,整理得:4k36k2+3k8=0,设f(k)=4k36k2+3k8,则f(k)=12k212k+3=3(2k1)20,f(k)=4k36k2+3k8为(0,+)的增函数,又f()=4363+38=1526=0,f(2)=4864+328=60,k2.【点评】本题考查直线与圆锥曲线的综合问题,常用的方法就是联立方程求出交点的横坐标或者纵坐标的关系,通过这两个关系的变形去求解,考查构造函数思想与导数法判断函数单调性,再结合零点存在定理确定参数范围,是难题.请考生在第2224题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DFCE,垂足为F.()证明:B,C,G,F四点共圆;()若AB=1,E为DA的中点,求四边形BCGF的面积.【考点】N8:圆內接多边形的性质与判定.菁优网版权所有【专题】14:证明题.【分析】()证明B,C,G,F四点共圆可证明四边形BCGF对角互补,由已知条件可知BCD=90,因此问题可转化为证明GFB=90;()在RtDFC中,GF=CD=GC,因此可得GFBGCB,则S四边形BCGF=2SBCG,据此解答.【解答】()证明:DFCE,RtDFCRtEDC,=,DE=DG,CD=BC,=,又GDF=DEF=BCF,GDFBCF,CFB=DFG,GFB=GFC+CFB=GFC+DFG=DFC=90,GFB+GCB=180,B,C,G,F四点共圆.()E为AD中点,AB=1,DG=CG=DE=,在RtDFC中,GF=CD=GC,连接GB,RtBCGRtBFG,S四边形BCGF=2SBCG=21=.【点评】本题考查四点共圆的判断,主要根据对角互补进行判断,注意三角形相似和全等性质的应用.[选项4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.()以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;()直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l的斜率.【考点】J1:圆的标准方程;J8:直线与圆相交的性质.菁优网版权所有【专题】11:计算题;35:转化思想;49:综合法;5B:直线与圆.【分析】()把圆C的标准方程化为一般方程,由此利用2=x2+y2,x=cos,y=sin,能求出圆C的极坐标方程.()由直线l的参数方程求出直线l的一般方程,再求出圆心到直线距离,由此能求出直线l的斜率.【解答】解:()圆C的方程为(x+6)2+y2=25,x2+y2+12x+11=0,2=x2+y2,x=cos,y=sin,C的极坐标方程为2+12cos+11=0.()直线l的参数方程是(t为参数),t=,代入y=tsin,得:直线l的一般方程y=tanx,l与C交与A,B两点,|AB|=,圆C的圆心C(6,0),半径r=5,圆心到直线的距离d=.圆心C(6,0)到直线距离d==,解得tan2=,tan==.l的斜率k=.【点评】本题考查圆的极坐标方程的求法,考查直线的斜率的求法,是中档题,解题时要认真审题,注意点到直线公式、圆的性质的合理运用.[选修4-5:不等式选讲]24.已知函数f(x)=|x|+|x+|,M为不等式f(x)2的解集.()求M;()证明:当a,bM时,|a+b||1+ab|.【考点】R5:绝对值不等式的解法.菁优网版权所有【专题】32:分类讨论;35:转化思想;4C:分类法;4R:转化法;59:不等式的解法及应用.【分析】(I)分当x时,当x时,当x时三种情况,分别求解不等式,综合可得答案;()当a,bM时,(a21)(b21)0,即a2b2+1a2+b2,配方后,可证得结论.【解答】解:(I)当x时,不等式f(x)2可化为:xx2,解得:x1,1x,当x时,不等式f(x)2可化为:x+x+=12,此时不等式恒成立,x,当x时,不等式f(x)2可化为:+x+x+2,解得:x1,x1,综上可得:M=(1,1);证明:()当a,bM时,(a21)(b21)0,即a2b2+1a2+b2,即a2b2+1+2aba2+b2+2ab,即(ab+1)2(a+b)2,即|a+b||1+ab|.【点评】本题考查的知识点是绝对值不等式的解法,不等式的证明,难度中档.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐