高考数学第4讲 内切圆问题(原卷版)

2023-11-19·5页·327.7 K

第4讲内切圆问题一、单选题1.(2020全国高三专题练习)已知点P为双曲线右支上一点,点F1,F2分别为双曲线的左右焦点,点I是PF1F2的内心(三角形内切圆的圆心),若恒有成立,则双曲线的离心率取值范围是()A.(1,)B.(1,2)C.(1,2]D.(1,]2.(2020宁夏银川市银川一中高三二模(文))已知点为双曲线右支上一点,点分别为双曲线的左右焦点,点是的内心(三角形内切圆的圆心),若恒有成立,则双曲线的离心率取值范围是A.B.C.D.3.(2020全国高三专题练习(理))已知是双曲线的两个焦点,过点且垂直于轴的直线与相交于两点,若,则的内切圆半径为()A.B.C.D.4.(2018浙江高三其他模拟)已知,是双曲线的左、右焦点,是双曲线上一点,且,若的内切圆半径为,则该双曲线的离心率为().A.B.C.D.5.(2020全国高三专题练习)已知,分别为双曲线的左焦点和右焦点,过的直线与双曲线的右支交于,两点,的内切圆半径为,的内切圆半径为,若,则直线的斜率为A.1B.C.2D.6.(2020全国高二开学考试)已知分别为双曲线的左、右焦点,过的直线与双曲线的右支交于两点(其中点在第一象限),设点分别为、的内心,则的取值范围是()A.B.C.D.7.(2020江西赣州市高三月考(理))为双曲线右支上一点,分别是双曲线的左、右焦点,且,直线交轴于点.若的内切圆的半径为,则双曲线的离心率为()A.B.C.D.8.(2018广西贺州市高二期末(文))已知双曲线的左右焦点分别为,点在双曲线上,且轴,若的内切圆半径为,则双曲线的离心率为A.B.C.D.9.(2016湖南高三月考(理))如图,为双曲线的左右焦点,且,若双曲线右支上存在点,使得,设直线与轴交于点,且的内切圆半径为,则双曲线的离心率为A.2B.4C.D.10.(2020广东(理))已知双曲线的左,右焦点分别为,,点在双曲线上,且轴,若的内切圆半径为,则其离心率为A.B.2C.D.11.(2020湖北武汉市高三二模(理))已知双曲线的左、右焦点分别为、,为双曲线的右支上一点,点和分别是的重心和内心,且与轴平行,若,则双曲线的离心率为()A.B.C.D.12.设双曲线在左右焦点分别为,若在曲线的右支上存在点,使得的内切圆半径,圆心记为,又的重心为,满足平行于轴,则双曲线的离心率为A.B.C.2D.13.(2020安徽安庆市高三三模(理))双曲线:的右支上一点在第一象限,,分别为双曲线的左、右焦点,为的内心,若内切圆的半径为1,直线,的斜率分别为,,则的值等于()A.B.C.D.二、多选题14.(2021湖北荆门市高三月考)已知,为双曲线:的左右焦点,过点作渐近线的垂线交双曲线右支于点,直线与轴交于点(,在轴同侧),连接,若内切圆圆心恰好落在以为直径的圆上,则下列结论正确的有()A.B.内切圆的半径为C.D.双曲线的离心率为三、填空题15.(2019四川成都市树德中学高二期中(文))已知点是双曲线右支上一点,,分别是双曲线的左右焦点,为的内心,若,则双曲线的离心率为______.16.(2017全国)已知点F1,F2分别是双曲线的左、右焦点,P为双曲线右支上一点,I是PF1F2的内心,且SIPF2SIPF1SIF1F2,则________.17.(2020银川市宁夏大学附属中学(理))已知椭圆的左、右焦点分别为F1、F2,过F1且垂直于长轴的直线交椭圆于A,B两点,则ABF2内切圆的半径为__________.18.(2021全国高三专题练习)已知F1F2为双曲线=1(a>0,b>0)的左右焦点,过F2作倾斜角为60的直线l交双曲线右支于A,B两点(A在x轴上方),则的内切圆半径r1与的内切圆半径r2之比为___________.19.(2018湖南益阳市高三月考(理))F1,F2分别为双曲线(a,b>0)的左、右焦点,点P在双曲线上,满足0,若PF1F2的内切圆半径与外接圆半径之比为,则该双曲线的离心率为_____.20.(2021全国高三二模(理))已知双曲线的左,右焦点分别为,,过右焦点的直线交该双曲线的右支于,两点(点位于第一象限),的内切圆半径为,的内切圆半径为,且满足,则直线的斜率为___________.21.(2021全国高三专题练习(文))已知,分别为双曲线的左、右焦点,的离心率,过的直线与双曲线的右支交于、两点(其中点在第一象限),设点、分别为、的内心,则的范围是_______________.(用只含有的式子表示)22.(2016河南许昌市高三三模(理))已知点P为双曲线x2a2-y2b2=1(a>0,b>0)右支上的一点,点F1,F2分别为双曲线的左、右焦点,双曲线的一条渐近线的斜率为7,若M为PF1F2的内心,且SPMF1=SPMF2+SMF1F2,则的值为.23.(2020和县第二中学高二期中(文))已知点为双曲线右支上一点,分别为双曲线的左、右焦点,且为的内心,若成立,则的值为___________.24.(2019长春市九台区第四中学高二期末(理))已知点为双曲线右支上的一点,分别为双曲线的左右焦点,为的内心,若成立,则的值为__________.25.(2020全国高三专题练习)已知一簇双曲线En:x2y2()2(nN*,且n2020),设双曲线En的左、右焦点分别为F、F,Pn是双曲线En右支上一动点,三角形PnF的内切圆Gn与x轴切于点An(an,0),则a1+a2+…a2020_____.26.(2020山东)已知,分别是双曲线的左,右焦点,过点向一条渐近线作垂线,交双曲线右支于点,直线与轴交于点(,在轴同侧),连接,若的内切圆圆心恰好落在以为直径的圆上,则的大小为________;双曲线的离心率为________.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐